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Recent experiments proposed to use confined bacteria in order to generate flows near

surfaces. We develop a mathematical and a computational model of this fluid transport

using a linear superposition of fundamental flow singularities. The rotation of a helical

bacterial flagellum induces both a force and a torque on the surrounding fluid, both of

which lead to a net flow along the surface. The combined flow is in general directed at

an angle to the axis of the flagellar filament. The optimal pumping is thus achieved

when bacteria are tilted with respect to the direction in which one wants to move the

fluid, in good agreement with experimental results. We further investigate the optimal

helical shapes to be used as micropumps near surfaces and show that bacterial flagella

are nearly optimal, a result which could be relevant to the expansion of bacterial

swarms. Published by AIP Publishing. https://doi.org/10.1063/1.5012070

I. INTRODUCTION

Transporting fluid on small scales is an important but complex problem. Various pumping

mechanisms are observed in nature, from fluid being pushed by muscles in the walls of the

lymphatic vessels,1 sodium-potassium pumps in the membranes of cells,2 and efficient osmotic

pumping in plants3 to cilia-induced flows in major organs including the brain,4 the respiratory

system,5 and reproductive tracts.6

Some of these transport mechanisms inspired the design of pumps for microfluidic systems

which may be used for biological and chemical sensing, drug delivery, molecular separation,

amplification, and sequencing.7 There are two major classes of such pumps: mechanical dis-

placement pumps, which apply forces to fluids via moving boundaries, and electro- and magne-

tokinetic pumps which provide energy to fluids continuously and as a result generate flow.8

Mechanical or electrokinetic micropumps are used in the majority of lab-on-a-chip devices that

require powered fluid flow, but the technical challenges and the requirement of external power

associated with these pumping devices have impeded their miniaturisation.

Self-powered micropumps have been designed to address some of these issues.9 One of the

solutions is to build bio-hybrid cell-based actuators. Recently, there has been growing interest in

using live biological cells to produce devices that work as microscopic gears,10 microrotors,11

micropumps,12 microswimmers,13 and microwalkers.14 Bacterial carpets, which are surface arrays

of fixed bacteria,15,16 can also create linear and rotational flows17 and enhance mixing.18

In this work, we focus on bacterial micropumps, with their potential to be used for automa-

tion of chemistry and biology.19 In one of the first bacterial micropump experiments, Escherichia
coli cells were tethered to microchannel walls by a single flagellar filament and the bodies of the

cells would rotate at about 10 rps, thereby pumping fluid from one end of the channel to the

other.20,21 In another experiment, cells were attached to the surface by their bodies with flagella

free to rotate,12 demonstrating that the bacteria are able to self-organise, generating a collective

flow that can pump fluid autonomously through a microfabricated channel. Furthermore, the addi-

tion of glucose to the working buffer raises the metabolic activity of the bacterial carpet, resulting

in enhanced pumping performance.
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In this paper, we consider the bacterial pumping system described in a recent experimental

paper where E. coli bacteria were confined within micro-fabricated structures in a prescribed

geometrical configuration and whose flagellar rotation collectively generated flow that can

transport materials along designed trajectories.22 This study naturally raises the question of (i)

how the performance of the resulting pumps depends on the detailed geometrical characteristics

of the microscopic cages in which the cells are trapped and (ii) how to optimise them. In order

to answer these questions, we use the mathematical techniques of resistive-force theory (RFT)23

and slender-body theory (SBT)24,25 to model the flow induced by the rotating flagellar filaments

of the trapped bacteria. We first quantify how the magnitude and direction of the bacteria-

driven pump depend on the configuration of the flagella and then address the geometrical opti-

misation of the helical shapes used to generate the flow.

II. FLUX INDUCED BY HELIX ROTATING ABOVE A WALL

In this section, we derive a mathematical model to compute the flux produced by a fixed

bacterium whose flagellar filaments are rotating above a no-slip wall. Both resistive-force the-

ory (analytical approach) and slender-body theory (computational approach) are used and we

compare our results with experimental measurements of Ref. 22.

A. Flux due to singularities above a wall

Consider a Cartesian coordinate system (x, y, z) with unit vectors (ex, ey, ez), as illustrated

in Fig. 1. A point force (Stokeslet) F¼Fxex is located at a height h above an infinite no-slip

wall with normal ez in a fluid with dynamic viscosity l. Assuming the flow to have no inertia,

which is a reasonable assumption on the small length scales of bacteria,22 the resulting solution

to the incompressible Stokes equations has a velocity field denoted by u. It is a classical (and

exact) result that this point force will then produce a net flux (i.e., flow rate)26,27 given by

QF ¼
ð1

0

ð1
�1
ðu � exÞexdydzþ

ð1
0

ð1
�1
ðu � eyÞeydxdz

þ
ð1
�1

ð1
�1
ðu � ezÞezdxdy

¼ Fxh

pl
ex;

(1)

which is in the same direction as the force (see Fig. 1). The calculation for the flux is summar-

ised in Appendix A. Physically, while the flow induced by a point force decays as 1/r, a point

force near a wall decays faster as 1/r2 and since the area of integration scales as distance

squared, a net flow rate is obtained in Eq. (1).

FIG. 1. A point force F¼ (Fx, 0, 0) and a point torque G¼ (Gx, 0, 0) located at (0, 0, h) above the infinite plane at z¼ 0

generate a net hydrodynamic flux Q ¼ Fxh=ðplÞex � Gx=ð2plÞey.
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Similarly, a point torque (Rotlet) G¼Gxex placed at the same location will produce exactly

the net flux

QG ¼ �
Gx

2pl
ey; (2)

which points in the direction perpendicular to both the torque and the surface (see the deriva-

tion in Appendix B).

B. Flagellar flows as one singularity

Most motile bacteria, including E. coli, are propelled by the rotation of helical flagellar fila-

ments.28 Each filament is attached to the cell body via a short flexible hook itself connected to

a bacterial rotary motor. The so-called “normal” shape of the flagellar filament is a left-handed

helix, typically rotated in the counter-clockwise (CCW) direction when viewed from behind the

cell. An E. coli bacterium has approximately 4 flagella on the body29 which normally bundle in

the back of the cell forming a thick effective helix.28

The simplest model for the flow induced by a rotating bundle of flagellar filaments near a

surface consists of computing the net force, F, and torque, G which the bundle applies on the

fluid and use the result from Sec. II A. In this simple model, we neglect the presence of the cell

body on the fluid flow because only a small portion of the flagellar bundle is near the cell

body, while the majority of the bundle is closer to the no-slip wall. Let us then assume that we

have a perfect helix parallel to a no-slip wall whose axis is at height z¼ h with the wall at

z¼ 0 (see Fig. 2).

In order to relate the values of F and G to the geometry of the helical bundle, we use

resistive-force theory (RFT) which captures the density of hydrodynamic forces acting on slen-

der filaments in Stokes flows.23 We denote by n? the drag coefficient (i.e., force per unit

length) for translation of a portion of the filament bundle locally perpendicular to its tangent

and nk the drag coefficient in the parallel direction and we write their ratio as q ¼ nk=n?. We

will use the drag coefficients obtained by Lighthill23 as

nk ¼
2pl

lnð0:18P sec W=rÞ ; n? ¼
4pl

1=2þ lnð0:18P sec W=rÞ ; (3)

where we denote l the dynamic viscosity of fluid, r the bundle radius, R the helix radius (i.e.,

the radius of the cylinder on which its centreline is coiled), P its pitch, and W the pitch angle

FIG. 2. Top and side view of a bacterium with a helical bundle of flagellar filaments. The helical bundle has pitch P, and

radius R, while the bundle radius is denoted by r. The axis of the helix is positioned at height h above the surface. With the

cell body stuck, the rotating bundle creates a net flow parallel to the surface with flow rate Q ¼ Qxex þQyey, and thus at an

angle tan b ¼ Qy=Qx to the x direction.
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(i.e., tan W ¼ 2pR=P), as shown in Fig. 2. The axis of the helix axis is assumed to be directed

along the x direction and we use cylindrical coordinates (r, h, x) around the helix axis.

It is a classical result30 that the force per unit length acting on the fluid by a counter-

clockwise (CCW, i.e., in the positive x direction) rotating left-handed helix has components

fh ¼ n?Rxð cos2 Wþ q sin2 WÞ; (4)

fx ¼ n?Rxð1� qÞ sin W cos W; (5)

fr ¼ 0; (6)

where x denotes the angular velocity of the helix. The total force acting on the fluid and the

total torque about the axis of the helix are obtained by integrating the force density along the

arc length 0� s� L leading to

Fx ¼
ðL

0

fxds ¼ n?Rxð1� qÞ sin W cos WL; (7)

Gx ¼
ðL

0

fhRds ¼ n?R2xð cos2 Wþ q sin2 WÞL; (8)

where L is the total contour length of the helix. Using the result of Sec. II A, these force and

torque induce a net flow rate of

Q ¼ Fxh

pl
ex �

Gx

2pl
ey: (9)

Using Q to denote the magnitude of the flux and b the angle between the net flow and the x
axis (see Fig. 2), Eq. (9) leads to

Q2 ¼ Fxh

pl

� �2

þ Gx

2pl

� �2

; b ¼ �arctan
Gx

2Fxh

� �
: (10)

If we substitute the expression for the force and the torque from Eqs. (7) to (8), the model leads

to the prediction

Q2 ¼ n?Rxð1� qÞ sin W cos WLh

pl

� �2

þ n?R2xð cos2 Wþ q sin2 WÞL
2pl

 !2

; (11)

b ¼ �arctan
ð cos2 Wþ q sin2 WÞR
2ð1� qÞ sin W cos Wh

 !
: (12)

C. Flagellar flows as a superposition of singularities

The approach in Sec. II B modelled the helix as a single force and torque singularity.

Alternatively, we may write the helix as a superposition of flow singularities. The centreline of

the left-handed helix may be parametrised as [x0(s, t), y0(s, t), z0(s, t)] with

x0ðs; tÞ ¼ s cos W; (13)

y0ðs; tÞ ¼ �R sin xt� 2p
s

P
cos W

� �
; (14)

z0ðs; tÞ ¼ h� R cos xt� 2p
s

P
cos W

� �
; (15)
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where s denotes the arclength along the helix centreline and t time. As a result, the total flow

rate has

QxðtÞ ¼
1

pl

ðL

0

fxðsÞz0ðs; tÞds; (16)

QyðtÞ ¼
1

pl

ðL

0

fyðs; tÞz0ðs; tÞds ¼ 1

pl

ðL

0

fhðsÞ cos xt� 2p
s

P
cos W

� �
z0ðsÞds: (17)

If we average over time, then we get the same results as before considering the point force and

the point torque, namely, Eqs. (11)–(12).

D. Numerical approach: Slender-body theory

In parallel to the analytical approach, we may use the improved, computational model

termed slender-body theory (SBT).24 Under this framework, there is a linear relationship

between the rigid body motion defined by the centreline velocity u and the hydrodynamic force

density f on the fluid formally written as25

8pluðx; tÞ ¼ �K f½ �ðsÞ �K f½ �ðsÞ; (18)

where the local, K, and the non-local operators, K, are, respectively, given by

K f½ �ðsÞ ¼ �cðIþ ŝŝÞ þ 2ðI� ŝŝÞ½ � � fðsÞ; (19)

K½f�ðsÞ ¼
ðL

0

Gðs; s0Þ � fðs0Þ � Iþ ŝŝ

js� s0j � fðsÞ
� �

ds0; (20)

where G is the Stokeslet singularity defined as

Gijðs; s0Þ ¼
dij þ R̂iR̂jðs; s0Þ

Rðs; s0Þ ; R ¼ xðsÞ � xðs0Þ; ŝ ¼ @xðsÞ
@s

; Iij ¼ dij; (21)

where i, j¼ {1, 2, 3}, s is the parametric arc length of the object and the constant c¼ log(�2e).

The parameter that defines slenderness is �¼ r/L, r and L being the cross-sectional radius and

total arc length of the slender object.

We solve Eq. (18) numerically in order to obtain the force distribution on a helix that

undergoes rigid-body rotation. The helix is divided into small straight segments over which the

force and velocity are assumed to be constant. This gives rise to a linear system of the form

ui¼Mijfj that can be solved for the velocity if the force distribution is known, or inverted to

find the force distribution if the velocity is known (which is the case here since the rotation is

being prescribed).

In order to account for the presence of wall, we place the slender helix in a semi-infinite

domain above a rigid boundary. The first term in the non-local operator K, Eq. (20), contains

the self-interactions of the slender filament. To include the presence of the rigid wall at z¼ 0,

we place image singularities for a Stokeslet26 on the opposite side of the wall for each element

of the slender object so as to satisfy the no-slip boundary condition on the wall exactly. The

operator K is then modified as

K½f�ðsÞ ¼
ðL

0

Gðs; s0Þ þGimðs; s0Þ
� �

� fðs0Þ � Iþ ŝŝ

js� s0j � fðsÞ
� �

ds0; (22)

where Gim is the image of the Stokeslet
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Gim
ij ¼ �

dij þ R̂
im

i R̂
im

j

Rim
þ 2hDjk

@

@Rim
k

hR̂
im

i

Rim2
� di3 þ R̂

im

i R̂
im

3

Rim

 !
; (23)

where h¼R3 is the distance from the wall, Rimðs; s0Þ ¼ xðsÞ � ximðs0Þ, and xim¼ [R1, R2, –R3].

The coefficients Djk take the value of 1 when j¼ k¼ 1, 2, and –1 when j¼ k¼ 3 and is 0 for

every other combination. We can then solve Eq. (18) numerically as above using the modified

operator K. The obtained force distribution f is shown in Fig. 3. We next integrate the force

density on the fluid, f, along the arc length of the helix to obtain the total force and torque

along the helix axis and the resulting flow rate

F ¼
ðL

0

fds; (24)

G ¼
ðL

0

Rðer � fÞds; (25)

Q ¼ 1

pl

ðL

0

fkhðsÞds; (26)

where ðer; eh; exÞ are the cylindrical coordinates with the flagellar axis along x and fk is the

force density component parallel to the no-slip wall at z¼ 0, i.e., fk ¼ f � ðf � ezÞez.

E. Comparing analytical model with computations

We may compare the results from the analytical RFT model with the numerical SBT

approach by using the set of parameters applicable to E. coli bacteria,22 namely P¼ 2 lm,

R¼ 0.25 lm, Laxial¼ 4 lm, r¼ 12 nm, f¼ 165 Hz, and h¼ 0.65 lm. Force distributions parallel

(i.e., along the x direction) and perpendicular to the helical axis (i.e., along the y direction) are

shown in Fig. 3. The main difference between the SBT with and without the hydrodynamic

presence of the wall is that adding the wall slightly increases the force component fx and leads

to small end effects. The analytical model (RFT) which is much simpler to implement and does

not include the effect of the wall is in good agreement with SBT despite a small but systematic

overestimation of the force fx. Interestingly, the forces parallel to the no-slip wall, i.e., fx, fy, are

not very sensitive to the presence of the wall.

FIG. 3. Comparison between the analytical (RFT) and numerical (SBT) results for the components of the hydrodynamic

force density f as a function of arc length, s, for E. coli’s helical filament rotating above the no-slip wall at height

h¼ 0.65 lm. Geometrical values are taken from Ref. 22.

014108-6 Dauparas, Das, and Lauga Biomicrofluidics 12, 014108 (2018)



F. Comparison between theory and experiments

Using the parameters for E. coli,22 we may compute the magnitude of the flow rate, Q, and

its direction, b, produced by the rotating flagellar filament. Experimentally, one would like to

pump the fluid along a specific direction at the maximum rate, say the negative y direction. If

we define the angle a as the angle between the helix axis and the x axis such that the flux vec-

tor is along negative y direction (Fig. 4) and given the definition of b shown in Fig. 2 (top),

then one should position the cell at the optimal angle a such that a ¼ p/2þb.

We use our theory and computations to compute the value of this optimal angle, a, and the

resulting magnitude of the flow rate, Q. We obtain results in excellent agreement with each

other, namely

RFT : a ¼ 52:5�; Q ¼ 219 lm3=s; F ¼ 0:838 pN; G ¼ 835 pN � lm; (27)

SBT : a ¼ 50:6�; Q ¼ 182 lm3=s; F ¼ 0:712 pN; G ¼ 832 pN � lm: (28)

In Ref. 22, Gao et al. conducted experiments with E. coli bacteria and performed numerical

simulations on the fluid flow due to trapped bacteria which were placed at angles 0�, 20�, 40�,
and 60� with respect to the x axis (using our notation). It was found that among those values,

the maximum flow rate was obtained for an angle of 40�. Our theoretical approach agrees with

their results. Furthermore, we are able to predict that the configuration with a� 50� is the best

one for the use of these cells to pumps fluids.

G. Fluid flow visualisation

In order to gain further understanding of the flow due to the superposition of the two flow sin-

gularities above the no-slip wall (Stokeslet and Rotlet), we plot in Fig. 5 the streamlines and contour

lines of the velocity magnitude, u ¼ ðu2
x þ u2

yÞ
1=2

, on the plane at height z¼ 2.1lm above the wall

(with geometrical parameters from Ref. 22). Specifically, we plot in Fig. 5(a) the flow due to the

point force only, in Fig. 5(b) the flow due to the point torque only and Fig. 5(c) shows the superpo-

sition of these two flows. As expected, the combination of pushing of the fluid along the helix and

rotating the helix, we clearly observe a flow occurring at an angle to the helix orientation.

A comparison between the flow field predicted by the analytical RFT model in the case

when we pick a¼ 40� and the experimental measurements of Ref. 22 in the same configuration

is shown in Fig. 6. The flow field predicted by the theory is qualitatively similar to the experi-

mentally obtained one and in both cases, we can clearly see the localised flow occurring mostly

along the y axis. Note that the experimental flow is about half as strong as the theoretically pre-

dicted one which is due to the fluid being stopped by the presence of the boxes which trap bac-

teria and which are absent in our theory (they essentially provide a vertical no-slip wall at

x¼ 0 lm).

FIG. 4. Top view of a bacterium with a rotating flagellar filament. The angle between the axis of the filament and the nor-

mal to direction of the net flux Q is denoted by a. The flow rate due to the force has magnitude QF, while that due to the tor-

que is denoted QG.

014108-7 Dauparas, Das, and Lauga Biomicrofluidics 12, 014108 (2018)



H. Dependence on the distance to the wall

So far, we have assumed that the distance between the cells and the surface was a fixed

height, h. If the helical filament was placed closer or further from the bottom surface, how

would this impact the value of the optimal angle a? Our theoretical and computational models

(RFT and SBT) allow us to investigate how the flux magnitude, Q, and the optimal angle, a,

depend on the value of h, with results shown in Fig. 7.

We obtain that the analytical and numerical results are in good agreement. Furthermore,

the analytical model predicts the optimal angle using Eq. (12) which is given by

a ¼ arctan
2Fh

G

� �
¼ arctan

2ð1� qÞ sin W cos Wh

ð cos2 Wþ q sin2 WÞR

 !
; (29)

which quantifies the relative strength between the flux generated by the helix torque, G, and

that due to the force above the wall, 2Fh. We see that the flow rate is systematically overesti-

mated by the analytical model compared to the simulations though the optimal angle a is

almost identical for both models. This overestimation using the RFT is due to the overestima-

tion of the total force F which becomes more important for larger h.

III. OPTIMAL HELICAL FORM

While the experiments in Ref. 22 exploited the flagella of E. coli in order to generate

flows, the recent development of artificial bacteria flagella31,32 suggests that helical shapes

FIG. 5. Streamlines and contour lines of the two-dimensional velocity magnitude for the helix modelled as a point force F
and a point torque G at the height h above the no-slip wall. (a) Fluid flow due to the point force only; (b) Flow due to torque

only; (c) Combined flow due to both singularities.
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different from the biological ones could also be used in order to induce pumping. In this sec-

tion, we investigate theoretically if a better (artificial) helical filament could be used to drive

the flow.

We pose the optimisation problem in the following manner. We wish to maximise the mag-

nitude of the flow rate, Q, given a constrain on the rate of energy dissipation in the fluid, D
(which is equal to the rate of working on the rotating helix against the fluid). Using the analyti-

cal RFT approximation, the magnitude of the flow rate is given by

FIG. 6. Velocity vectors and 2D velocity magnitude contours for five helices tilted at angle a¼ 40�, at height h¼ 0.65 lm

above the wall. The flow is shown above the helices in the plane z¼ 2.1 lm. The helical axes are denoted by thick blue

lines with the red dots in the middle. (a) Flow obtained using the analytical model (RFT) as the superposition of flows due

to individual helices; (b) Flow measured experimentally. Reproduced with permission from Gao et al., Lab Chip 15,

4555–4562 (2015). Copyright 2015 The Royal Society of Chemistry.

FIG. 7. Comparison between the analytical model (RFT) and the numerical approach (SBT) for (a) the optimal angle a and

(b) the flux Q as a function of height h for the helix rotating above the no-slip wall.
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Q2 ¼ Fh

pl

� �2

þ G

2pl

� �2

;

¼ n?Rxð1� qÞ sin W cos WLh

pl

� �2

þ n?R2xð cos2 Wþ q sin2 WÞL
2pl

 !2

; (30)

while the rate of viscous dissipation in the fluid due to the rotating but not translating helix

using Eq. (8) is

D ¼ Gx ¼ n?R2x2ð cos2 Wþ q sin2 WÞL: (31)

Let us assume that we wish to keep the dissipation constant, i.e., D¼D0, and maximise the

magnitude of Q. Substituting L in terms of D0 into the expression for the flux, one gets the

flow rate now given by

Q2 ¼ 1þ 2hð1� qÞ sin W cos W

Rð cos2 Wþ q sin2 WÞ

 !2
2
4

3
5 D0

2plx

� �2

: (32)

We see that the flux Q is inversely proportional to the angular velocity x, which means that for

a given dissipation, D0¼Gx, smaller angular velocity x will lead to a bigger torque G, i.e., a

larger flow rate. This can be achieved, for example, by having a longer helix and thus a larger

value of L.

For a given total torque on the helix G, what is the shape of the helix which produces the

biggest flux Q? In order to find the answer, we need to maximise the force F for the fixed

height h. We know that F is linearly proportional to the angular speed x and the arc length L.

Fixing the values of G, x, h, L, and r sets the dissipation D0¼Gx, and we aim to determine

the helix radius, R, and its pitch, P, so that the flow rate is maximal. This minimisation problem

may be formulated using the Lagrangian M and the Lagrange multiplier k given by

MðP;R; kÞ ¼ Q2ðP;RÞ þ k GðP;RÞ � G0½ �; (33)

Q2 ¼ Fh

pl

� �2

þ G

2pl

� �2

; (34)

F ¼ n?Rxð1� qÞ sin W cos WL; (35)

G ¼ n?R2xð cos2 Wþ q sin2 WÞL; (36)

nk ¼
2pl

lnð0:18P sec W=rÞ ; n? ¼
4pl

1=2þ lnð0:18P sec W=rÞ ; (37)

q ¼
nk
n?
; tan W ¼ 2pR

P
: (38)

We numerically solve the resulting Euler-Lagrange equations based on the RFT model

@

@P
MðP;R; kÞ ¼ 0;

@

@R
MðP;R; kÞ ¼ 0;

@

@k
MðP;R; kÞ ¼ 0; (39)

in order to determine the extrema for the flux. The solution is shown in Fig. 8(a) as a scatter

plot for torques in the range G0¼ 500, 700, … 3300 pN lm.

The extrema points (P, R) all lie on the fitted line R¼ 0.189P – 0.002 lm which can be

rationalised as follows. Ignoring the weak logarithmic dependence of nk; n? on R, P we can in
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fact find analytically the optimal values of R, and P which maximise the flux for a given torque

namely

2pR

P
¼ tan W0 ¼ q�1=4: (40)

This analytical solution is shown as a black line in Fig. 8(a) and is very close to the blue line

(numerical calculations). In this figure, we also use the red triangle to denote the radius and

pitch for the flagellar filament of E. coli, while the green square denotes the optimal radius and

the pitch for pumping such that the torque is the same as that generated the E. coli bacterium.

In the case of E. coli, it was reported that the torque applied by the rotary motor remains

approximately constant up to a relatively high rotation frequency (170 Hz at 23 �C),33,34 and we

use this biological value of 830 pN lm for G.

We may then calculate the radius, pitch, flux, and the optimal angle in terms of the fixed

quantities for the optimal shape, i.e., when tan W ¼ q�1=4 and obtain

R ¼ G0

n?xL

� �1=2

� q�1=4; (41)

FIG. 8. (a) and (b) Contours values of the torque, G, as a function of the helix radius, R, and pitch, P. Torques computed

using the analytical model (RFT, a) and the numerical model (SBT, b). The scatter plots show the discrete values of R, P
that maximise Q given the torque values G0¼ 500, 700, …3300 pN lm. (c) Optimal flux, Q, as a function of the applied tor-

que, G. (d) Marginal increase in the flux, E, using the optimal helix versus the E. coli helix as a function of distance to the

wall, h. In (a)–(c) the red triangles denote the values of pitch, radius, torque, and flux for the E. coli bacterium, while the

green square shows the optimal radius, pitch, and flux for the same torque as E. coli.
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P ¼ 2pq1=4R ¼ 2p
G0

n?xL

� �1=2

; (42)

Q2 ¼ n?RLxðq1=4 � q3=4Þh
pl

 !2

þ G0

2pl

� �2

; (43)

Q2 ¼ n1=2
? L1=2x1=2G

1=2
0 ð1� q1=2Þh

pl

 !2

þ G0

2pl

� �2

; (44)

tan a ¼ 2n1=2
? L1=2x1=2G

�1=2
0 hð1� q1=2Þ: (45)

Surprisingly, the optimal pitch P is independent of the drag ratio q but is only a function

of the applied torque G0, the helix length L, the rotation frequency x, and the drag coeffi-

cient n?.

Instead of the analytical modelling approach, we may instead compute the flux Q as a func-

tion of the parameters of the helix, R, P, using the numerical model (SBT) with a fixed helix

height above the wall h¼ 0.65 lm. These results are shown in Fig. 8(b). The contours of the

torque G as the function of the helix radius R and the pitch P match well the ones calculated

using the analytical model (RFT). In both cases, the contours are almost horizontal when the

radius R is small, e.g., about 0.25 lm in the case of E. coli. This can be justified by examining

the form of torque

G ¼ n?R2xð cos2 Wþ q sin2 WÞL ¼ n?R2xL
P2 þ 4p2qR2

P2 þ 4p2R2

� �
: (46)

The torque depends weakly on the pitch P, especially when the helix radius R is small. This

means that the contours of G are approximately G(R, P) 	 R2¼ const, i.e., horizontal contour

lines.

The optimal value of the flux, Q, is plotted in Fig. 8(c) as a function of the applied torque,

G. We see that the analytical model systematically overestimates the flux compared with the

computational approach. Remarkably, the difference between the flow rate produced by the E.
coli bacterium and the optimal one for the same applied torque is only 3%, revealing that the

bacterial flagellar filaments are almost at the optimal shape to pump the fluid over the surface.

How does this result depend on the distance to the surface? We may compute the ratio between

the flux Qa due to the optimal artificial helix (force Fa, torque G0) versus the flux Qe due to the

E. coli shaped helix (force Fe, torque G0)

E ¼ Qa

Qe
� 1 ¼ G2

0=ð2plÞ2 þ F2
ah2=ðplÞ2

G2
0=ð2plÞ2 þ F2

eh2=ðplÞ2

 !1=2

� 1; (47)

E ¼ 1þ F2
ah2 � F2

eh2

G2
0=4þ F2

eh2

 !1=2

� 1 ¼ 1þ ðFa=FeÞ2 � 1

1þ G2
0=ð4F2

eh2Þ

 !1=2

� 1: (48)

The applied torque calculated analytically is G0¼ 835 pN lm. The biological force is

Fe¼ 0.838 pN, while the optimal force is Fa¼ 0.910 pN. We see in Fig. 8(d) that the percent-

age increase in flow rate between the biological value and the optimal value is always in the

range 3%–8% and increases with the height above the wall. Bacterial filaments thus seem to be

nearly optimal for pumping fluid very close to a surface, a result which could be important in

the context of efficient expansion of bacterial swarms.35
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IV. CONCLUSION

Our simple analytical (RFT) and computational (SBT) models are able to capture the

leading-order physics of the fluid flux produced by a rotating helical bundle of flagellar filaments

near a no-slip wall. Fluid is being pumped along the flagellar axis because of the net force acting

on the fluid and in the direction perpendicular to the flagellar axis because of the rotation in the

presence of the wall. The force produces a flow rate QF¼Fh/(pl) which depends on the distance

to the wall h, whereas the torque produces the flux QG¼G/(2pl). The combined effect of force

and torque implies that the net flow rate is directed at an angle to the flagellum, whose value

depends on the helix parameters and its distance to the wall. While our model is limited to the

cases where the boundary affecting the fluid flow is a flat no-slip wall, more advanced numerical

techniques would be needed to tackle complex boundaries such as channels, corners, and irregular

surfaces. Importantly, our theoretical predictions agree with the numerical and experimental

results in Ref. 22, and thus provide fundamental understanding of the relationship between orien-

tation and flow pumping, setting the stage for the future development of efficient micropumps not

only using bacteria but also other actuation methods (e.g., magnetic).

We next investigate the optimal shape of the helix in terms of its radius R and pitch P
assuming a fixed applied torque G, total helical length L, angular speed x, height above the wall

h, and filament radius r. We find that nearly optimal pumping is achieved when the helix pitch

angle is fixed and equal to tan W ¼ 2pR=P ¼ q�1=4, where q is the ratio between the drag coeffi-

cients. With a drag ratio q¼ 1/2, one finds that W is close to 50�. While the pitch angle for nor-

mal flagellar filaments is close to 40� and is optimised for propulsion,36 the theoretically optimal

pumping helix performs only 3% to 8% better than E. coli depending on the height above the

wall. This is a very small difference indicating that bacterial flagella are very efficient micro-

pumps, a result which could be relevant to the expansion of bacterial swarms37 or the future

development of biological micropumps to be used for automation in chemistry and biology.19
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APPENDIX A: POINT FORCE ABOVE AN INFINITE WALL AT Z ¼ 0

Consider a Stokeslet placed at y0 ¼ ð0; 0; hÞ. Define r ¼ x� y0 ¼ ðx; y; z� hÞ and R¼ (x, y,

zþ h). The solution for a Stokeslet in the vicinity of a stationary plane boundary is26,27

ui ¼
Fj

8pl
dij

r
þ rirj

r3

� �
� dij

R
þ RiRj

R3

� �� �

þ Fj

8pl
2hðdjadak � dj3d3kÞ

@

@Rk

hRi

R3
� di3

R
þ RiR3

R3

� �� 	" #
: (A1)

We are interested in the Stokeslet parallel to the wall; therefore, without loss of generality we

choose F¼ (F1, 0, 0). Let us calculate the flux in the plane perpendicular to the Stokeslet

Q1 ¼
ð1

0

ð1
�1

u1dy dz: (A2)

Expand the flow to the leading order in h and integrate to get

u1 ¼
F1

8pl
12x2zh

ðx2 þ y2 þ z2Þ5=2
þOðh2Þ

" #
; Q1 ¼

F1h

pl
� : (A3)

Therefore, there is a finite flow rate produced in the direction of the Stokeslet given by

014108-13 Dauparas, Das, and Lauga Biomicrofluidics 12, 014108 (2018)



Q ¼
Fkh

pl
; (A4)

where Fk ¼ ðF1;F2; 0Þ. Note that the flux is zero if the force is perpendicular to the wall, as

expected by symmetry.

APPENDIX B: POINT TORQUE ABOVE AN INFINITE WALL AT Z ¼ 0

Consider now a Rotlet placed at y0 ¼ ð0; 0; hÞ. Define r ¼ x� y0 ¼ ðx; y; z� hÞ and R¼ (x,

y, zþ h). The solution for the Rotlet in the vicinity of a stationary plane boundary is26,27

ui ¼
Gj�ijk

8pl
rk

r3
� Rk

R3

� �
þ Gj�kj3

8pl
2h

dik

R3
� 3RiRk

R5

� �
þ 6RiRkR3

R5

� �
: (B1)

Since we are interested in the Rotlet parallel to the wall, we choose G¼ (0, G2, 0). The flux pro-

duced by this Rotlet when it is above the no-slip wall is

Q1 ¼
ð1

0

ð1
�1

u1dy dz; Q2 ¼ 0; Q3 ¼ 0: (B2)

Expanding the flow to the order in h and integrate we obtain

u1 ¼
G2

8pl
6x2z

ðx2 þ y2 þ z2Þ5=2
þOðhÞ

" #
; Q1 ¼

G2

2pl
� : (B3)

So in general the flux is given by

Q ¼
Gk � ez

2pl
; (B4)

where Gk ¼ ðG1;G2; 0Þ and here again the flux is zero if the torque is perpendicular to the wall.
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